Skill Transfer from Sight Translation to Simultaneous Interpreting: A Case Study of an Effective Teaching Technique

Stanley Zhongwei Song
Macquarie University

Abstract

In this article, a case study is presented that demonstrates the potential of a new sight translation (ST) teaching technique for simultaneous interpreting (SI) training. By using animated, time-controlled PowerPoint presentations instead of texts on paper, this method induces constraints such as time pressure and attention splitting, thus making ST essentially an on-line information processing activity, closely resembling SI. Apart from reviewing how to design the method, the author compares it with the two existing methods (i.e., ST with prior reading and ST without prior reading), makes some hypothetical analysis of its functionality in SI training, and discusses some preliminary research findings from using the technique. The author argues that the simulated SI-related constraints, which the traditional ST methods cannot provoke, are helpful in enhancing students’ awareness and acquisition of SI-related skills and strategies for SI training, hoping that the case study can arouse more interest in future empirical investigation.

Key words: sight translation; simultaneous interpretation; skill acquisition; skill development; skills transfer; deliberate practice

1 Correspondence to: zhongwei.song@mq.edu.au
Skill Transfer from Sight Translation to Simultaneous Interpreting: A Case Study of an Effective Teaching Technique

1. Introduction

Sight translation (ST) has long been used in conference interpreting training. However, few research efforts have identified and tested what specific skills learned from ST are applicable to *simultaneous interpreting* (SI). Even less research has been focused on how to deliberately acquire these skills and what techniques or methods of practice can be used to efficiently transfer these skills to SI.

The dearth of research on the pedagogical relationship between ST and SI constitutes a sharp contrast to the growing wealth of literature on conference interpreting as a whole, indicating that the pedagogical value of ST skills as part of SI training is yet to be corroborated (Song and Noël, 2007). In other words, we, the interpreting teaching community, must question ourselves as to whether we have effectively used ST for SI purposes, or whether the existing methods of ST are, indeed, efficient, relevant, or deliberate enough for use in skill acquisition and transfer.

Didactically, there are two commonly used ST teaching methods for conference interpreting training and empirical investigation: a) ST with prior reading and b) ST without prior reading. Lambert (2004) defines the two methods as two variants of ST—one less challenging and one more challenging. By *less challenging*, she refers to ST with prior reading, in which an interpreter is allowed approximately ten minutes to read a 300-word passage and prepare the vocabulary to be used; by *more challenging*, she refers to ST without prior reading, in which preparation time is eliminated altogether, and the interpreter is asked to begin translating immediately, without having a chance to read the source language text (Lambert, p. 298).

The practice of using ST to facilitate skill acquisition for SI through these two existing methods is largely based on the conviction that SI and ST are both complex cognitive processes, involving parallel operations in the transfer of the meaning of a text from one language into another, despite the fact that ST is from the visual mode to the oral mode and SI from the auditory mode to the oral mode (Ilg and Lambert, 1996; Lambert, 2004). To carry out these cognitively interdependent operations, the two processes require shared complex skills: meaning unit identification, chunking, anticipation, and a quick response (Brady, 1989; Gile, 1995; Ilg and Lambert, 1996; Jiménez, 2001; Moser-Mercer, 1995). Thanks to its commonalities with SI, ST is duly regarded as an integral part of conference interpreting training or one of “the training wheels” for skill development and acquisition of SI.

Despite the shared features, however, one of the fundamental differences between the two is that SI is an online information processing activity, in which attention is constantly divided between comprehension of the input and production of the output (de Groot, 1997, p. 27), whereas ST is not, particularly given the two traditional methods where information is available, at any time, on paper. To innovatively use ST for SI training, a new method should be created whereby ST can be tweaked to share some on-line information processing attributes. To this end, it must enable a text to be fed, segment by segment, in the form of animation, so as to resemble the
delivery of an oral presentation. That is, with each new segment of information coming up, the old, instead of remaining as part of the text, disappears. In other words, input rate must be introduced, and it must be time-controlled and externally manipulated. Only in this way can some of the SI constraints be induced in ST to enable conference interpreting students to develop on-line information processing skills and strategies prior to, or at the very beginning of, simultaneous interpreting training.

2. ST pedagogical values in SI skill development

2.1 ST, a cognitive process as SI

Traditionally, ST is believed to have played a secondary and supportive role in interpreting training and that its primary task is to boost language proficiency, in that it is able to increase information processing speed, speaking proficiency, reading comprehension, and speech production (Curvers, Klein, Riva & Wuilmart, 1986; Falbo, 1995; Mikkelsen, 1992; Spilka, 1966; Viaggio, 1995; Weber, 1990). The major reason for ST’s supportive role for language competency is summed up by O’Malley & Chamot (1990), quoting Anderson’s thesis (1983, 1985) that “the mental processes necessary for language comprehension of both aural and written texts are sufficiently similar that comprehension of both can generally be discussed as a common phenomenon” (p. 34).

In addition, the versatility of ST in interpreting training and research stems from the fact that ST is a complex cognitive process, characterized by the simultaneous management of two tasks: visual reception and oral production (Brady, 1989; Chernov, 2004; Jiménez, 2001; Moser-Mercer, 1995). In other words, ST is a simultaneous process of oral translation, delivered at a speed controlled by the translator and conditioned by the interconnected sub-processes—ranging from reading and comprehending the text of a source language to reformulating and producing in a target language. Many scholars, therefore, have qualified it as a variant of SI, simultaneous translation (McDonald & Carpenter, 1981), or interpretation with texts (Howard, 1986). Further, many researchers have used ST as one of the experimental components to explore the skill components of SI training and the development of those skills. For example, Lambert (2004) studied shared attention by comparing ST with sight interpretation and with SI for different types of information processing; Agrifoglio (2004), in comparing the constraints and failures of ST with consecutive and simultaneous interpreting, has found that the “sight translator has to rely on short-term memory to retrieve information from the beginning of sentences, or the formulation he/she has already embarked on, especially where grammatical structures differ markedly between the two languages” (p. 61). This finding adds to, rather than contradicts, Gile’s (1997) Effort Model of ST in which ST is believed to involve no memory effort at all. These findings point to the potential pedagogical value of ST; its usefulness could go far beyond the realm of language competency.

In explaining his conceptual Effort Model of ST, Gile (1995) points out that the listening effort of SI is replaced by the reading effort in ST. Despite one being the auditory mode and one being the visual mode, the analysis process of ST remains unchanged, leading to high cognitive demands on the reading and analysis capacity. ST is thus regarded as an ideal means to train novice interpreters but only for those situations where an interpreter is required to simultaneously interpret a written text given before a conference starts (Weber, 1990). Not in disagreement with this practical view, Gile, however, focuses more on the similarities of ST and SI in the cognitive process, vigorously advocating the concurrent teaching of both ST and SI upon the mastery of consecutive interpreting. Moser-Mercer (1994) also attaches great importance to, and strongly supports, the pedagogical value of ST in conference interpreting training, arguing that it helps students divorce themselves from the original text, increase their speed of analysis, and manipulate a text with syntax and stylistics. Pratt (1990) concludes that ST as a teaching tool can contribute to “self-discipline, self-training, self-assessment and feedback” (p. 604). These views have pedagogical ramifications for ST teaching, highlighting the assumption that ST is a tool of deliberate practice for skill acquisition and skill transfer to SI.

From a perspective of deliberate practice, several skills and strategies for information processing with ST (which are also required by SI) were observed: compression of the main points of information from a written text and presentation of a restructured “oral” speech (Weber, 1990); segmentation, through reading, for ideal closure;
Teaching sight translation

anticipation based on grammatical, syntactical, semantic, and contextual cues; time pressure management to avoid limiting attention resources; and delivery of an oral nature (Ilg and Lambert, 1996). Therefore, it is fairly safe to say that using ST as a tool of deliberate practice for acquiring these skills and strategies can have a significant impact on the students’ ability to develop the skills of SI.

2.2 The two existing methods of ST

The two commonly used methods of ST have long been used in facilitating skill development for conference interpreting training. The first one is ST with prior reading, an activity where students are allowed to read a source language text of 300 to 500 words for a limited amount of time prior to providing an oral translation in a target language. The second one is ST without prior reading, an exercise in which students are required to interpret a given written text immediately upon reading it. In both instances, students are instructed to deliver their text in the target language at an even but self-paced rate while trying to maintain the same level of fluency.

2.3 The problems with each of the two methods used for SI training

Although ST shares some skills and strategies with SI, when used for the purpose of SI training, ST presents some limitations both intrinsic to, and generated by, the two existing methods. If not appropriately dealt with, those limitations can prevent SI skill development from progressing appropriately.

First, in both methods, the presence of visual interference, together with syntactic interference from the source language text, tends to slow down comprehension, delay delivery time, and compromise performance quality. If not handled properly during training, the syntactic complexity and differences of the source language from the target language, combined with the visual interference of the written text, may hinder SI skill development in terms of a quick response, idea closure, and anticipation. In her experiment, Agrifoglio (2004) has corroborated the findings of several other researchers, indicating that the subjects were observed having a constant struggle against increased visual interference from the source language, making ST more hazardous than SI in operation (Brady, 1989). Agrifoglio emphasizes, “The sight translator needs to know at what point he/she can look ahead to identify key words and units and anticipate conceptualization, while planning and executing his/her expression in the target language” (p. 54).

Second, for ST with prior reading, a sight translator not only has access to the text beforehand, but also is given several minutes to read it before translating it. In Agrifoglio’s (2004) experiment, the subjects were given about five minutes to read a text of approximately 800 words. Given those conditions, it would be extremely hard to assess and verify whether the final output is indeed achieved by a set of skills they have developed or by the contextual knowledge (and/or memory) obtained through reading the text. For anyone who is linguistically competent and trained in the consecutive technique, three to five minutes of preparation time for a short passage of 300 words means a great deal and can make a huge difference in output. Obviously, using this method does not help develop additional skills and strategies necessary for on-line information processing.

Third, ST without prior reading clearly is more challenging; it can be argued that the process becomes mult-tasking, similar to SI in terms of accessing the new information input and delivering the output in an almost online manner. To perform ST in this manner, however, the interpreter must be able to read ahead for meaning (as the words gradually appear), just as was suggested by Agrifoglio, above. Apart from the intrinsic visual and source language interference that can upset a student’s anticipation, the method itself cannot dictate the output rate of the translator, for he/she can, consciously or unconsciously, slow down the information processing in order to identify additional linguistic cues or clues. Once this occurs, staccato or long silent pauses take place, reducing the constraint of time pressure this method is intended to create. Since the text is written, the students can still search for linguistic and contextual cues and clues at a self-controlled pace. This highlights the fact that real on-line information processing skills for SI cannot be developed using this method, unless external input rate is introduced to simulate the constraint of time pressure.
3. **Rationale for designing a new method of ST**

In conference interpreting training, ST is not taught or practiced merely for its own sake. It is taught with hopes that those particular skills of ST that are shared with SI can be developed prior to the commencement of SI training and eventually acquired in time. Essential for skill development and acquisition, deliberate practice has been referred to as highly structured activities designed to improve specific aspects of the experts’ performance and facilitate the development of their mediating representations (Ericsson, Krampe & Tesch-Romer, 1993). To acquire a skill or a cohort of them from one domain to another, the precondition is to reconstruct the representative conditions in the laboratory that can elicit the same performance in the needed domain (Ericsson, 2000). Given Ericsson’s Theory of Deliberate Practice (2000), the extent to which skills are acquired, developed, and transferred primarily depends upon: a) problem identification and b) design of deliberate practice for problem solving.

In SI, the processing speed is critical, given time limitations and cognitive overload. Thus, in order to develop a more cohesive teaching approach aimed at effectively and efficiently developing and transferring skills required for on-line information processing, the constraints of time pressure, constant attention splitting, and cognitive overload must be taken into account when ST is part of conference interpreting training. Although regarded as valuable for training in terms of developing a quick response and avoidance of transcoding, the existing methods, (with information accessible at any time on paper) are unable to simulate the effect of real on-line information processing of SI where words disappear gradually.

Therefore, when using ST, it is important to remember that although both methods are valuable, a new method is needed, one in which new elements will be introduced. It must meet the following three requirements in order to turn ST more closely related to SI in practical terms:

- It must be able to minimize the visual interference so that the skills of meaning-unit identification and chunking can be practiced with relative ease.
- The effect of having the words vanish shall be simulated to the extent that the exercises for SI skill acquisition are made similar to the actual SI process.
- In order to achieve this effect and the interplay of working memory with other skills in SI, external input rate must be introduced according to the individual competency levels of students.

Once the above preconditions have been met, two hypotheses can be established:

- If an adjustable external input rate is introduced that enables upcoming information to vanish gradually, the SI effect can be created to generate manifested on-line constraints.
- With these constraints now available in ST, students can cultivate their awareness of, and develop skills for, some specific strategies needed in SI in a practical manner.

4. **Designing the method**

Various software applications can be employed to meet these requirements. One of the easiest methods is to use Microsoft Office PowerPoint 2003 or 2007, in which a selected text can be uploaded to a number of slides and automatically timed to appear on the screen, one at a time, and with segments gradually appearing on the screen at a preset speed. For the purpose of demonstration, Microsoft Office PowerPoint 2003 is used below to demonstrate how to make slides for the proposed ST method.

Step 1: Open Microsoft Office PowerPoint 2003 and type in, or paste from a Word document, the topic of the text that is to be used, as shown in Figure 1.
Teaching sight translation

Step 2: Open the second slide and paste onto it the entire text (300 words or more) that will be used, as shown in Figure 2.

Step 3: Further divide the text and individually upload sequential segments onto additional slides. Limit the number of words on each slide to between 15 and 30, as shown in Figure 3. Click on Slide Sorter View in the lower left-hand corner of the screen in order to show all of the separate slides (see Figure 4).
Step 4: Choose Font Size 40 for each slide by selecting/checking each slide, from the third slide through the last slide; click on the Font Size button on the dropdown menu and select 40, as shown in Figure 5.

Step 5: Once all slides have been set, click Slide Show (as shown in Figure 6) and find Animation Schemes in the dropdown menu; click to open up the Menu on the right-hand side, as shown in Figure 7.
Teaching sight translation

Step 6: On the right-hand side of the screen, find the window **Apply to Selected Slides**. Under it there are four categories: **Basic**, **Subtle**, **Moderate** and **Exciting**. In **Moderate**, select and click **Unfold**, as shown in Figure 8, then click **Apply to All Slides** in the box below the window. All the slides will now be animated, as shown in Figure 9.

Step 7: Since the words on each slide are not equal in number and will need different viewing times, it is likely that you will need to go back to **Slide Show** where you can click on **Slide Transition** to select the viewing time given to each slide as well as the amount of time that transpires between the slides (see Figure 10). On the right-hand side of the screen, you will find **Modify Transition**, and you are given the options of **Fast**, **Medium**, and...
Slow for choosing the length of time each slide will remain in view (see Figure 11). Below the box labelled Modify Translation, you will find Advance Slide, which provides you with two options: a) On Mouse Click and b) Automatically After. Below Automatically After, you will find a box in which you can indicate the transition time, in seconds, that you desire for each slide (see Figure 12).

Figure 10

Figure 11

Figure 12

Step 8: Another option allows you to click Rehearse Timings under the dropdown menu of the Slide Show; this allows you to allocate time for each individual slide as well as the time between the slides, according to your teaching intention or the amount of words on each slide, as shown in Figure 13. Compared to using the Slide
Teaching sight translation

Transition option described above, Rehearse Timings is more time-consuming but also more “consumer-friendly” in terms of being able to individualize each slide.

When the above steps have been taken, save the ST text in the form of a PowerPoint presentation. The prepared text can now be run automatically once you click the Slide Show icon found in the lower left-hand corner.

If one prefers using Microsoft Office PowerPoint 2007, the whole designing process is much easier. Just click Animation and then Custom Animation to open up the window on the right-hand side. Select Add Effect to scroll down to Entrance in the dropdown menu, where you select the Unfold mode; then click Add Effect again to find Exit using the same Unfold effect. With the Unfold mode selected in both Add Effect and Exit, the slide is now capable of having the text gradually disappear after it has been seen in its entirety. The slides will appear automatically, one after another, and once the last word of the segment appears on the screen, the segment will vanish gradually from the slide, from the beginning of the text to the end.

5. A preliminary experiment

When it comes to SI training, it is not uncommon that trainers find some students initially progressing at a very slow pace. This is due, in part, to the fact that the students tend to return to their habitual consecutive skills in dealing with the on-line information processing of SI, and, partly, to the fact that they lack multi-tasking skills (e.g., splitting their attention in order to simultaneously handle comprehension of the input and production of the output). Either way is stressful, and, in turn, further hinders their progress. As this is the case, the SI training and exercises should not be begun prematurely; transition time is necessary for students to move from consecutive interpretation to simultaneous interpreting. Moser-Mercer (1995) has long cautioned interpreting researchers against taking ST for granted, because “each type of sight translation makes different demands on the translator's or interpreter's processing capacities, any empirical study on sight translation needs to proceed from a precise definition on what type of sight translation is being investigated” (p. 160). This new method is clearly not used to replace, but rather to supplement the two traditional ones. By doing so, it is intended to generate more value to the progression of skill development that lead to SI.

This proposed method is deliberately designed for SI students; not only do the words on each slide gradually unfold, or appear, letter by letter, but the gradual appearance of the letters and words on the screen are “speaker-paced” at an externally set input rate, one that is adjustable to the extent to which a certain skills are to be acquired. In this situation, continuous access to information in the text, a distinct feature of ST, is not available, as it disappears from the screen segment by segment, resulting in high demands on the interplay between working memory and splitting attention, a defining feature of SI. It allows students to gradually, but confidently, acquire SI skills through ST, a mode of interpretation with which they are familiar and comfortable, before embarking on
SI; the rationale is, therefore, to bridge the gap between ST and SI in terms of skills, dovetailing the merger of their shared skills.

With the proposed method put into operation, the students and trainers are able to monitor several things pivotal to SI skill development. The performance of the students can be self-assessed, using the following questions to determine where their weaknesses are and how to address them: How fast can I follow? How many omissions have I made? What is the quality of my delivery? If I am slow and my delivery is staccato, is it because of my lack of a multi-tasking ability or chunking skills, or is it due to my inability to identify meaning units? If I can follow, can I go even faster by anticipating what is yet to be shown in the next segment or slide? With the help of their trainers, students can develop suitable strategies of deliberate practice while reducing the level of psychological stress—as compared to plunging into SI straightaway. To trainers, after deciding upon what skills are to be targeted and by which ST drills, one of their tasks is to determine which specific skills individual students still find challenging and what the underlying causes are (e.g., lack of chunking skills, visual interference of ST, etc.) for poor performance.

Bearing in mind the above questions, the author conducted an experiment with subjects selected from students studying for their master’s degree in conference interpreting at Macquarie University, Sydney. Six subjects were given two ST exercises. To sight translate the first exercise, the subjects were given a text of 290 words, which was presented on a piece of 4A paper; for the second exercise, a text of 300 words was uploaded onto a computer through Microsoft Office PowerPoint 2003. Fifteen slides were used, each slide containing, on average, 20 words, or approximately one or two sentences. The slides were set at a prescribed rate of 90 words per minute and projected overhead onto a large screen to be sight translated by six subjects (four sitting in each of four booths and two sitting in the lecture room, ten meters apart).

For the first exercise, one of the subjects, identified through training as being weak in delivery due to the lack of chunking skills, spent six minutes previewing the printed text, as compared to the slightly over three minutes required by the other five students. However, when forced to sight translate 15 slides of the second text in the form of PowerPoint presentation, this particular subject managed to finish ST in 3’25”, within close range to his peers, who completed the ST between 3’10” and 3’15”.

6. Discussion

Judging from the weakness of his chunking skills, which resulted in cognitive overload and forced him to commit more omissions or misinterpretations because of his difficulties in reformulation and delivery, it was assumed that this particular student’s overall performance would be worse than his peers. However, the subsequent findings from the analysis of the recordings indicate that little difference was identified between his scores and those of the others in terms of omission and misinterpretation. This subject committed four omissions; his five peers committed two (three peers) and three omissions (two peers). The results are more or less the same as the data we collected from another experiment, in which self-designed computer software was used. Based on the analysis, preliminary conclusions were reached:

A text uploaded to Microsoft Office PowerPoint tends to increase students’ reaction time in both reformulation and production, since they are left with no alternatives but to process the texts and complete ST in line with the externally set input rate.

The quality of the performances by some students can be affected more by visual interference than by lack of chunking skills. The new method limits each slide to approximately 20 words, significantly reducing visual interference as only one or two sentences appears at a time in font size 40, much larger than size 12 on A4 paper. With shorter segments comprised of sentences and embedded clauses, trainees tend to find it relatively easy to identify and chunk meaning units. The change helps psychologically by increasing the confidence of the students, as it reduces the visual interference of the text to a more manageable degree. The author is aware that more investigational effort should be made for the purpose of assessing skill transfer to SI, in order to fully understand if visual interference is, indeed, reduced.

Faster reaction time by subjects during production seems to indicate that with the presentation time of the words appearing on the slides significantly less than that of words seen on paper, students are less likely to observe the
Teaching sight translation

left-to-right strategy in processing the message when reading the rapidly appearing slides than they do in reading text written on A4 paper. In this way, trainees avoid translating certain sentences, which would be virtually impossible to interpret (Moser-Mercer, 1995).

Driven by an externally set speed for each segment that appears letter-by-letter on a slide before switching to the following slide, students are working under pressure and tend to interpret the text with their working memory while anticipating and establishing a mental representation of the concept. Part of this thesis seems to have been corroborated by the fact that all the subjects participating in the experiment continued to interpret for a space of time ranging from 8 to 21 seconds after the last slide was finished and that none of them committed any omissions in the last segment.

6.1 Implications for anticipation

Previous research shows that one of the fundamental differences in ST between professionals and students is that the former are capable of handling the comprehension process (i.e., reading, parsing, and meaning integration) spontaneously, and the latter often separate the process into segments, completing the reading before translating (Moser-Mercer, 1995). With an externally set input rate, the effect of words vanishing from the screen has turned ST into on-line information processing that requires, among other cognitive resources, a sense of urgency that results in speeding up meaning-unit identification and chunking by incorporating reading, parsing, and meaning integration simultaneously. In so doing, students will feel, for the first time, the necessity of anticipating linguistic and extralinguistic features as a strategy to deal with time constraints and cognitive overload.

For training purposes, the external input should be set between 70 and 75 wpm if the purpose is to use this type of ST as a pedagogical tool for observing and discussing anticipation with students. This exercise could be done regardless of whether students have already been exposed to SI or not. The cues and clues that encourage anticipation could be observed by students in this way, “so that the intelligence of the process and the acquired skill could be transferred successfully to the full-fledged SI situation” (Song and Noël, 2007, p. 43).

6.2 Implications for ear-voice span, working memory, and other skills

Thanks to the simulation of a speaker-paced input rate, time pressure stands out as one of central issues for students when working with on-line information processing. If not appropriately dealt with, time pressure can lead to many cognitive problems. In this context, the input rate has a direct bearing on comprehension, working memory, splitting attention, and future training on ear-voice span (EVS), another defining feature of SI.

Perceptual processing, parsing, and utilization, the three interrelated processes in comprehending written texts, are consistent with listening comprehension processes (Anderson, 1983). In SI, information is, through listening comprehension, continuously chunked into more abstract units that combine the essentials of meaning of the smaller units that are being recoded (Moser, 1978). As with SI, the extent to which the upcoming information can be chunked and how it is chunked in SI determines what specific strategies and skills are to be used for comprehension and production.

One strategy often used in SI is to change EVS, the time lag between comprehension and production. Whether EVS should be shortened or enlarged depends upon several factors, including input rate and information density, and each has positive and negative effects on the cognitive efforts of an interpreter. The application of this strategy requires the interplay of many other skills to offset the accompanying negative effects. To shorten EVS reduces cognitive overload on working memory, yet, it increases the risk of losing the context. Generally speaking, however, interpreters are highly motivated to keep pace (Goldman-Eisler, 1972) and they must resolve all syntactic and semantic ambiguities (de Groot, 1997) in order to do so. Therefore, at times, the interpreters must enlarge EVS for in-depth comprehension at the cost of working memory overload and simultaneity.

From a perspective of scaffolding SI skills through ST, it seems imperative that students be exposed to exercises as well as given opportunities to gain some procedural knowledge and skills in order to balance out time lag strategy in SI. With the new technique, the input rate (i.e., the speed at which the information is uploaded onto
individual slides), is adjustable, as is the interval time between slides. In other words, speed can be manipulated to allow “students to lengthen and shorten their EVS in specific cases” (Gile, 1995, p. 195). By doing so, the students are given a taste of EVS before SI training starts.

Given that EVS is often changed to cope with problems of memory overload and comprehension, the underlying skills, such as how to chunk and when to delay the response, to assist the alternation of EVS change in SI are very important. It is assumed, therefore, that the new method is theoretically able to prepare students for acquiring skills that allow adequate adjustment to EVS in SI ahead of actually practising SI.

7. Conclusion

When using ST for SI training, the major impediment to skill transfer from one to the other seems not to originate from the fundamental difference of the two, but from the static nature of ST; this is in sharp contrast to the dynamic on-line nature of SI. The proposed method is designed using manipulation to add more similar conditions to ST, as well as the constraints representative of SI. In this sense, the existing two methods of ST are not as helpful. Naturally, what ST can help achieve in skill acquisition only constitutes part of what SI requires, at best. Other modes of interpretation training components, methods, and approaches (e.g., consecutive interpreting) must also be utilized (Déjean Le Féal, 1997). Given that skill development is a qualitative stage-like progression (Ericsson, 2000; Hoffman, 1997), the new method is but one of many “training wheels” used only as a complement to other types of ST methods, prior to—or together with—ST for SI skill acquisition.

Theoretically, this new method, with the effect of words vanishing from the screen and with an externally controlled input rate, can simulate the conditions of SI and induce its constraints, which include, but are not limited to, meaning unit identification, splitting attention, chunking, anticipation, EVS adjustment, and segmentation. Its potentials, as discussed above, do need to be further corroborated with further empirical investigation. The author will continue to probe the application of this technique with more experiments and hopes to further verify or falsify those hypotheses related to the development of various SI-related skills and strategies.
Teaching sight translation

8. References

